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Abstract

This paper considers the problem of temporal prediction for inter-frame coding of video sequences using locally
linear embedding (LLE). LLE-based prediction, first considered for intra-frame prediction, computes the predictor
as a linear combination of K nearest neighbors (K-NN) searched within one or several reference frames. The paper
explores different K-NN search strategies in the context of temporal prediction, leading to several temporal predictor
variants. The proposed methods are tested as extra inter-frame prediction modes in an H.264 codec, but the proposed
concepts are still valid in HEVC. The results show significant Rate-Distortion performance gains are obtained with
respect to H.264 (up to 15.31 % bit-rate saving).
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1. Introduction

Most video coding standards achieve data compression by exploiting similarities within frames (i.e., the spatial
redundancy), as well as between the target frame and one or several reference frames (i.e., the temporal redundancy).
Intra-frame coding techniques are used to reduce the spatial redundancy within each frame separately, whereas inter-
frame coding techniques are used to reduce the temporal redundancy between successive frames of a video sequence.

Intra prediction is a powerful tool to remove spatial redundancy in intra-frame coding. In the H.264 video com-
pression standard [1], each frame is partitioned into blocks, and for each block to be coded, a predictor block is created
by extrapolating previously coded and reconstructed pixels surrounding the target block to be coded. Nine prediction
modes have been defined which propagate surrounding pixels along different directions. In HEVC [2], the intra-frame
prediction has been extended to support 33 directional prediction modes. The encoder selects the prediction mode
which is the best in a rate-distortion (RD) sense, using a Lagrangian optimization technique, and signals the retained
mode to the decoder.

Inter-frame predictors are typically obtained by motion estimation and compensation methods that match every
block to be coded with a similar block in one or several reference frames, using the so-called block matching (BM)
algorithm [1][2]. The position of the best matching block in a reference frame is signaled to the decoder by trans-
mitting a motion vector. The motion vector may locate the best matching block with a fractional pixel (pel) accuracy
thanks to fractional positions interpolation in the reference frames.

The motion estimation can also be performed using the so-called template matching (TM) technique [3]. The
methods exploits the correlation between the current block and a pre-defined set of neighboring pixels, called the
template of the current block. Rather than looking for the most correlated block in the reference frames, one looks
for the most correlated template. The block which is adjacent to this template is used as a predictor for the current
block. The motion compensation is performed using the exact same process, so no motion information needs to be
transmitted to the decoder. This technique efficiency has also been demonstrated for intra-frame prediction [4]. The
RD performance of this method can be improved by using a weighted combination of multiple predictors. Initially
a simple averaging of the predictors was performed [5][6], but methods using adaptive weights, e.g. using sparse
approximation [7], were shown to bring significant improvements.

In this paper, we consider an approximation method called Locally Linear Embedding (LLE), introduced in [8] for
data dimensionality reduction, which we adapt to the problem of temporal prediction. The LLE technique has already
been shown to be very efficient for intra-frame prediction in [9][10]. However, the derivation from intra-frame to
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inter-frame prediction is not trivial, mainly because the proposed techniques are now in competition with the motion
estimation/compensation, which is a more efficient prediction tool than the intra-frame directional modes. The idea
is to first search for a representation of the template as a linear combination of K templates (called K-NN templates)
taken from a search window denoted SW. The linear combination coefficients (or weights) are then applied on the
blocks adjacent to the K-NN templates to yield the current block predictor. The LLE weights are computed using a
least square formulation of the template approximation problem under the constraint that they sum to one.

The K-NN search strategy has a strong impact on the predictor quality. In fact, the TM technique efficiency rely
on the hypothesis that the template and its adjacent block are well correlated. First, we proposed a direct derivation of
the TM technique, where the K-NN can be found by computing distances between the template of the current block
and those of candidate blocks in the reference frames. This method is denoted Template Matching LLE (TM-LLE)
and, as for the TM method, no side information (i.e., no motion vector) needs to be sent to the decoder. A variant
of this method is introduced where the first neighbor is searched by template matching (as in TM-LLE), but the
remaining (K − 1)-NN are found by computing a distance between the complete patch formed by the template and
adjacent block of the first neighbor and the candidate patches in the search window. The method is denoted Improved
Template Matching LLE (ITM-LLE).

Second, to further improve the K-NN search, we introduce a method enforcing the correlation between the tem-
plates and their adjacent blocks, but requiring the transmission of side information to the decoder. Thus, we propose
a method where the K-NN search is initialized with a block-matching algorithm. This implies that a motion vector is
sent to the decoder. We then find the remaining (K − 1)-NN as in ITM-LLE. This method is named Block-Matching
LLE (BM-LLE).

Finally, we propose an improved variant of the ITM-LLE method, denoted optimized ITM-LLE (oITM-LLE). In
this method, we basically obtain L predictors by running L times the ITM-LLE method. The best iteration in a RD
sense is retained, and its index is sent to the decoder.

The experiments and their analysis focus on RD performance evaluations of the proposed prediction methods
against the standard reference techniques: directional and motion estimated/compensated prediction modes of H.264
and template matching averaging (TM-A). This analysis is carried out using a legacy H.264 implementation, but note
that the proposed techniques are still applicable in HEVC, since the inter-frame prediction tool in HEVC follow the
same principles as those used in H.264. Simulation results show that significant RD performance improvements are
achieved compared to the reference prediction methods. The performed analysis includes elements of complexity in
terms of execution times measured at the encoder.

The rest of the paper is organized as follows. Section 2 reviews background on video compression methods
(H.264, HEVC), as well as the TM-based prediction methods. Section 3 describes the proposed LLE-based temporal
prediction techniques. Section 4 explains how the proposed prediction methods have been used in an H.264 codec and
they could be used in HEVC. We then give the PSNR-rate performance gains compared to the reference H.264 codec.
Section 5 sums up how the proposed techniques can be integrated in the HEVC codec and why they are still valid.

2. Temporal prediction: Background

This section first summarizes the relevant features of the temporal prediction methods in the H.264 video com-
pression scheme [1] and the corresponding techniques in HEVC [2]. It then briefly revises state-of-the-art temporal
prediction methods based on template matching.

2.1. Motion-compensated inter-frame prediction in H.264 and HEVC

A motion vector (MV) is estimated for each block of the possible partitions (4×4 to 16×16, 16×8 in H.264, 8×8
to 64×64 in HEVC), usually using a BM algorithm. The MV establishes a correspondence between the current block
and a block in one of the reference frames. This block is used as the predictor. The reference frames are stored in two
buffers called L0 and L1 lists. The L0 list contains reference frames from the past while the L1 list contains reference
frames from the future. For each block, the motion vector, the reference frame index and the list index are coded and
sent to the decoder. The coding efficiency of the MVs relies on their predictive coding, under the assumption that the
motion vector field is continuous (at least locally). Thus, in H.264, a motion vector predictor (MVP) is computed as
the median of available neighboring MVs. Only the difference between the current MV and the MVP is then coded. In
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Figure 1: Template Matching for inter-frame prediction.

HEVC, the MVs coding efficiency is even improved by using the Adaptive Motion Vector Prediction list or the Merge
list. The improved efficiency compared to H.264 for inter-frame prediction thus comes more from the optimization of
the side information coding than from the prediction quality. In both H.264 and HEVC, the side information coding
is further improved by using Context-Adaptive Binary Arithmetic Coding (CABAC).

2.2. Prediction based on Template Matching (TM)

A Template Matching (TM) algorithm has been considered instead of the BM algorithm for both intra-frame [4]
and inter-frame [3] prediction. The TM method is very close to the BM method, although this time it is not the pixels
in the current block to be predicted which are used to find the best match but the template pixels, on the top and to
the left of the blocks (see Fig. 1). The union of the template Xk and of its adjacent block Xu forms the patch X .
The underlying basic idea of the algorithm is to take advantage of a supposed correlation between the pixels in the
block and those in its template. For inter-frame prediction, the first step of the algorithm is to look for the NN of the
template in a search window defined in one or more reference frames. Here and for the rest of this paper the metric
used to find the NN is the sum of absolute difference (SAD). Once the NN XTM

k of Xk is found, the adjacent block
XTM

u of this template is used as a predictor for the current block Xu. The benefit of this method is that this prediction
process can be reproduced at the decoder, hence no side information (such as MV) needs to be sent to the decoder
anymore [11]. Although efficient in terms of bit-rate reduction in the case of homogeneous texture, the method yields
low quality predictors in image areas where the block and its template are not well correlated.

The technique has been extensively studied in H.264 [3][4][11], and was considered for intra-frame prediction in
the early stage of HEVC [12]. Even though it was not retained for the standard, it was later shown that it can improve
the RD performance of HEVC, e.g. when used for inter-frame bi-prediction in combination with block matching [13].

In order to improve the predictor quality, a so-called template matching averaging (TM-A) method has been
proposed in [6]. In this method, one looks for the K-NN of the current template and not only the first one. The
predictor of the current block Xu is then obtained by averaging the K blocks adjacent to the K-NN of the template.
This enables to smooth the predictor, which is advantageous most of the time, and computationally reasonable. Given
the higher performances of TM-A compared to TM, only TM-A has been considered in the comparative assessment
made in section 4.

Note that different approaches relying on K-NN combination have been explored for intra-frame or inter-frame
coding, such as sparse representations [7][14], or Nonnegative Matrix Factorization [9][10]. However, results in [7]
show that neighbor embedding techniques such as LLE or NMF outperform sparse representations in terms of RD
performances. In [10], results show that NMF performs slightly better than LLE in terms of RD performance, but
complexity for NMF is much higher than LLE, especially at the encoder side. These conclusions motivate the use
of the LLE in this paper, described in the following section. More recently, prediction methods based on weighted
template matching have been proposed to improve HEVC Intra RD performances, e.g. in [15]. The method presented
in [15] demonstrates the efficiency of weighted template matching against HEVC Intra mode. However, this method
is optimized to reduce complexity, e.g. by using tabulated exponential weights, while we focus on optimizing the RD
performances by using optimal weights in a least square sense.
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on the 𝐾 blocks in 𝐀𝑘 to predict 𝑋𝑢 

Figure 2: Predictor computation technique based on LLE. Assuming the dictionary A is available, a weighting coefficient vector V is learned using
the LLE, which approximates the current template Xk with the K templates in Ak . The current block predictor X̂u is obtained by applying the
learned weights to the K blocks in Au.

3. Inter-frame prediction based on LLE

This section describes the proposed inter-frame prediction techniques using LLE. LLE-based prediction methods
search for the linear combination of K nearest neighbors which best approximates in a least squares sense the template
of the current block, under the constraint that the weights of the linear combination sum to one. The block predictor is
computed by applying the found weights to the blocks which are adjacent to the K-NN templates. The section below
first presents the weights computation, assuming that the K-NN are available. We then describe the K-NN search
strategies which are studied in the paper.

3.1. LLE-based predictor computation

The weighting coefficients are computed by formulating the template approximation problem as a least squares
problem, under the constraint that the weights sum to one. The found weighting coefficients are applied in the linear
combination of the adjacent block pixels in order to compute the block predictor (see Fig. 2).

Let A = [Ak

Au
] denote a so-called dictionary represented by a matrix of dimension N ×K. The columns of the

dictionary A are constructed by stacking the K candidate texture patches found after the K-NN search step. The
sub-matrices Ak and Au contain the pixel values of the templates and of the blocks respectively. Let X = [Xk

Xu
] be

the vector composed of the known pixels of the template Xk and the unknown pixels of the current block Xu.
The LLE-based prediction problem can be re-written as:

min
V
‖Xk −AkV ‖22 s.t.

∑
m

Vm = 1 (1)

where V denotes the optimal weighting coefficients vector which is computed as

V =
D−11

1TD−11
. (2)

The term D denotes the local covariance matrix (i.e., in reference to Xk) of the selected K-NN templates stacked in
Ak, and 1 is the column vector of ones. In practice, instead of an explicit inversion of the matrix D, the linear system
of equations DV = 1 is solved, then the weights are rescaled so that they sum to one.

The predictor of the current block X̂u is then obtained as:

X̂u = AuV (3)
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Figure 3: Search for the K-NN of the current template in the TM-LLE method.

3.2. Template-based K-NN search for LLE-based prediction
This section first describes two LLE-based methods in which the K-NN search is not based on real motion esti-

mation but rather on template matching, and thus does not need to send side information to the decoder.
The first K-NN search method simply looks for the K-NN of the current template (see Fig. 3). The K patches

stacked in the dictionary A thus consist in the K templates found (Ak), along with their adjacent blocks (Au). The
current block can then be predicted as explained in section 3.1. This K-NN strategy is as simple as the one of the
TM-A method, however it suffers from the same limitations in the sense that the candidate patches found may not lead
to the best predictor. This method, referred to as Template Matching LLE (TM-LLE), does not require transmitting
extra side information to the decoder which can perform the same K-NN search.

An improved variant of the previous method is to find the first NN of the current template in a first step. Then in
a second step, the (K − 1)-NN of the previous patch are found in order to build the complete dictionary A. Note that
these (K − 1)-NN are now found with respect to the whole patch, which tends to reinforce the correlation between
the templates and the blocks (inner correlation of the patch). However, if the first NN found is not well correlated
with the current patch, the predictor quality will decrease. This method is referred to as Improved Template Matching
LLE (ITM-LLE).

3.3. Block-based K-NN search for LLE-based prediction
To better overcome the potential lack of correlation between the blocks and their templates, we propose to use the

current block to guide the K-NN search. This implies that additional information needs to be sent to the decoder, so
that it can find the exact same K-NN. The following methods use the current block to find the first NN. The K − 1
remaining patch are found with respect to the previous NN. To signal the NN to the decoder, a motion vector is
transmitted.

The prediction first proceeds by computing the motion vector using a classical block matching algorithm. The best
matching block (the first nearest neighbor) XBM

u of the current block Xu is found. The patch containing this block
XBM = [

XBM
k

XBM
u

] is used as the first patch of the dictionary for the LLE. The second step is to search for the (K− 1)-NN
[a1, ...,aK−1] of the patch XBM. The union of these K patches A =

[
XBM,a1, ...,aK−1

]
forms the dictionary (see

Fig. 4) used for the LLE computation described above by equations (1), (2) and (3). The MVs can then be encoded as
in the reference codec (e.g. H.264 or HEVC), which does not increase the MVs coding cost.

3.4. Optimized template-based K-NN search for LLE-based prediction
To further enhance the RD performance, the ITM-LLE method was optimized. First, L nearest neighbors to the

template of the current block are found. For each patch cl found by this L-NN search, a dictionary is constructed
leading to a set of L dictionaries A0, ...,AL−1. Each dictionary Al is formed by stacking the patch formed by cl and
the adjacent block and its (K − 1) − NN (see Fig . 5). Since the patches are found using only the template of the
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Figure 4: Illustration of the first two steps of the BM-LLE method.

Figure 5: Example of construction of A0 and AL−1 dictionaries from candidate patches c0 and cL−1 (oITM-LLE method).

current block, the same set of dictionaries can be found by the decoder. An LLE-based predictor is computed with
each dictionary and the dictionary Alopt giving the best RD performances is retained, and its index lopt is signalled
to the decoder. The number of dictionaries L is taken as a power of 2, and the index is coded with a fixed length
binary code. This method is referred to as optimized ITM-LLE (oITM-LLE). The different steps of the algorithm are
detailed as pseudo-code in Algorithm 1.

4. Simulations and results

4.1. Integration in the MPEG-4 AVC/H.264 coding scheme

The reference and proposed methods presented in sections 2 and 3 respectively have been tested in a H.264 frame-
work. The TM-A and the LLE-based prediction methods have been introduced in the coding scheme in competition
with the existing H.264 inter and intra prediction modes. This solution was chosen over a simple replacement of the
existing motion compensation prediction (MCP) method by an Inter LLE-based method because they are complemen-
tary. In fact the MCP method is already quite efficient, e.g. for smooth textures with little or no motion. A typical
example is a static background where the Skip mode can be used. Multi-patches methods such as the proposed ones
using LLE are better at predicting high frequency pseudo-periodic textures, which are not easy to reconstruct using
only one block.
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Algorithm 1 oITM-LLE prediction method
Input: X,K,L
Output: current block predictor X̂u

Determine the L nearest neighbors of the current template Xk , i.e the templates ck0
, ..., ckL−1

such that d0 ≤ ... ≤ dL−1 with di =

||Xk − cki
||

Retain the L patches associated with the L templates determined in the previous step: ci = [
cki
cui

], i = 0, . . . , L− 1

for l = 0→ l = L− 1 do
Find K − 1 neighbors close to cl, i.e., the patches

[
al
1, ...,a

l
K−1

]
Set Al =

[
cl,a

l
1, ...,a

l
K−1

]
Retrieve Al

k =
[
al
k0

, ...,al
kK−1

]
and Al

u =
[
al
u0

, ...,al
uK−1

]
from Al. Note that here cl = [

al
k0

al
u0

]

Solve the constrained least squares problem:
minV l

∥∥Xk −Al
kV

l
∥∥2
2

s.t.
∑

m Vl
m = 1

Get the predictor:
X̂l

u = Al
uV

l

Compute the corresponding RD cost RDl

end for
Select the optimum lopt = argminl RDl

Set X̂u = A
lopt
u V lopt

The MCP method is used for block partitions going from size 16 × 16 to 8 × 8. Experiments using the H.264
reference software show that further sub-partitioning into 8× 4, 4× 8 and 4× 4 blocks brings little improvement in
terms of coding performance, while increasing the complexity. In fact, the signaling cost of the MVs usually becomes
prohibitive for such small partitions. The TM-A and our LLE-based prediction methods are applied on 8× 8 blocks.

The Skip mode is allowed for both P and B frames, as well as the additional bi-predictive mode for the B frames.
The Inter TM-A or LLE-based method to be tested is introduced in competition with the MCP method for 8 × 8
partitions only, and for both P and B frames. We set the template width to 3 pixels. The choice between the classical
MCP method or the additional TM-A or LLE-based method is based on a RDO criterion. The syntax then needs to
be modified to send a flag to the decoder indicating which method is selected. The rate is therefore increased by 1
bit for each partition that features an additional Inter prediction method (TM-A or LLE-based). The index lopt of the
selected dictionary is also transmitted using a fixed length code when the oITM-LLE method is retained for predicting
the current block. Experiments showed that the bit-rate corresponding to the flag for the selected method amounts in
average to about two to three percents of the full bit-rate, while the bit-rate of the dictionary index reaches four to five
percents. Note that this extra information bit-rate could be further reduced using the CABAC.

The search window for the Inter TM-A or Inter LLE-based prediction methods is defined in the reference frames of
the L0 list for the P frames, of the L0 and L1 lists for the B frames, and in the decoded part (causal part) of the current
frame for both P and B frames. Note that if an LLE-based prediction method is applied to intra-frame prediction, the
search window is only defined in the causal window. The search window is centered on the position of the current
block.

Note that the solution we propose to integrate our method in the H.264 codec is still valid in HEVC. In fact, the pre-
diction tools in HEVC follow the same principles as those used in H.264. As reported in section 2.2, it was shown that
template matching based methods can outperform the intra-frame or inter-frame prediction tools of HEVC [13][15].
Our methods are optimized to further improve the prediction quality compare to these techniques, thus we expect to
reach better RD performances. The use of the proposed methods in HEVC would require adapting our techniques to
the different prediction units (PUs) size, especially the larger ones, which provide better RD performances [16]. This
adaptation is conceptually straightforward, and can even be extended to rectangular PUs. Furthermore, additional
tools providing RD gain, such as adaptive transform sizes, SAO [16], are directly compatible with the proposed meth-
ods. As mentioned above, the overhead in the bitstream corresponding to the flag indicating if the LLE-based method
is used and the index for the oITM-LLE method is low for H.264, and we do not expect an increase for HEVC, since
applying the proposed methods on larger PUs would reduce the number of flags or indexes to be transmitted.
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Table 1: Simulations parameters
Parameter Setting
Sequence type: IBBPBBP
Number of encoded frames: 31 (Matrix: 34)
Number of reference frames:
- for BM: 4
- for K-NN: 4 (& causal part)
Search-range:
- for BM: 32 pel for CIF

64 pel for 720p
- for K-NN: 32 pel for all
Search method:
- for BM: Fast Full Search
- for K-NN: Full Search
Search accuracy:
- for BM: Quarter Pel
- for K-NN: Full Pel
Block sizes for intra: all 16x16 to 4x4
Block sizes for MCP: all 16x16 to 8x8
Block sizes for LLE: 8x8
Template size: +3 pel on width and height
Quantization parameter (I/P/B): 22/23/24, 27/28/29,

32/33/34, 37/38/39
Number L of dictionaries for oITM-LLE 32

4.2. Experimental conditions

The proposed schemes have been implemented in the latest release of the JM-KTA software [17], in order to be
compared with the H.264 prediction modes. Simulations have been run using 5 test sequences presenting different
characteristics in terms of motion and texture (see Fig. 16-20 in section 7), and having different resolutions (three
CIF sequences and two 1280 × 720 sequences). The CIF sequences are respectively made of 31 frames extracted
from the Foreman sequence (frames 149-179), characterized by fast motion and smooth natural texture, 31 frames
extracted from the “Rushes” sequence (frames 597-627) containing high frequency texture and complex motion, and
34 frames extracted from the trailer of the Matrix movie1 (frames 1810-1843). This sequence was chosen because
of its fast scene changes, occurring every 2-3 frames. The different scenes contain little motion but cover a wide
range of textures. The 1280 × 720 sequences are made of 31 frames extracted from the “City” (frames 230-260)
and the “Spincalendar” (frames 500-530) sequences respectively. The urban scene in the “City” sequence contains
non-stochastic high frequency textures, with a slow camera motion. The “Spincalendar” sequence contains different
textures following a smooth rotation motion. The modified encoder (see section 4.1) has been configured with the
Main profile [1] and the parameters given in Table 1. The rate gains are obtained using the Bjontegaard measures
[18]. The complexity is measured trough the percentage of the tested encoder processing time over the one of the
H.264 reference encoder. Note that, due to different experimental conditions, the given complexity values correspond
to averaged estimates with a standard deviation of about 10 %.

In the following section, we first analyze the performances of the proposed methods when used for Inter prediction.
The performances are analyzed as a function of the key parameters K, the reference frames number and the search
window size. We also give the corresponding complexity. Second, the methods are also assessed when used for Intra
prediction only or when used for both Intra and Inter prediction.

4.3. RD performance analysis & elements of complexity

In this section we discuss the gains in terms of bit-rate reduction of the proposed methods against the H.264
reference, along with the execution times measured at the encoder. The values are averaged over the full panel of test
sequences.

1 c©1999-2015 Warner Bros.
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4.3.1. Impact of the parameter K
Fig. 6 shows how the bit-rate savings for each method vary as a function of the parameter K. Fig. 7 shows the

corresponding complexity for each method, except the oITM-LLE method, which reaches significantly higher levels
(about 5000 to 6000 %). In terms of RD performance, the TM-LLE, ITM-LLE and oITM-LLE methods outperform
the TM-A method, which demonstrates the better adaptation of the LLE weights compared to a simple averaging,
especially when K increases. In average, the highest bit-rate saving is achieved with the oITM-LLE method, reaching
more than 8 %.
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Figure 6: Coding performances obtained with the different proposed prediction methods as a function of the number K of nearest neighbors.

100

150

200

250

300

350

400

450

500

550

600

8 16 32 64 128

R
u

n
n

in
g

 t
im

e
 %

 c
o

m
p

a
re

d
 t

o
 r

ef
e
re

n
ce

 s
o

ft
w

a
re

 

K 

Encoder complexity depending on K 

H.264
TM-A
TM-LLE
BM-LLE
ITM-LLE
oITM-LLE

Figure 7: Encoder complexity obtained with the different proposed prediction methods as a function of the number K of nearest neighbors.

In Table 2, we give, for each method, the K value tuned to obtain a satisfying trade-off between the execution
time and the coding gain (from Fig. 6 and Fig. 7), which are also given. We can see that the TM-LLE and ITM-
LLE methods are competitive with the state-of-the-art methods, either in terms of complexity or RD performances.
However, the BM-LLE is only competitive in terms of complexity, but not in terms of coding gains. The oITM-LLE
does produce the best results in term of bit-rate reduction, but at a really high cost in terms of execution time. For
the aforementioned reasons, the detailed analysis of the BM-LLE and oITM-LLE methods is not pushed further for
inter-frame prediction. We will see however in section 4.4 that, when used for intra-frame prediction, the oITM-LLE
method can be efficiently combined with less complex inter-frame prediction method such as TM-LLE. For the next
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simulations, K is set to the values presented in Table 2.

Table 2: K values set to achieve a trade-off between RD performances and complexity.
Method K value Execution time in % Bit-rate gain in %
TM-A 8 213 -5.30
TM-LLE 8 249 -5.89
BM-LLE 16 204 -1.80
ITM-LLE 64 362 -5.85
oITM-LLE 32 5077 -7.79

4.3.2. Impact of the reference frames number
Fig. 8 shows how the bit-rate gains for each method vary as a function of the number of reference frames. Fig.

9 shows the corresponding complexity. In terms of RD performance, we can see that the proposed methods can
outperform the TM-A and the highest bit-rate reduction is achieved with the ITM-LLE method, reaching 6.33 %.

In Table 3, the reference frames number is set in order to achieve a satisfying trade-off between complexity and RD
performances (from Fig. 8 and Fig. 9). The corresponding execution times and bit-rate reductions are given. We can
see that the TM-LLE method can be competitive with the TM-A method in terms of RD performances while reducing
the complexity. The ITM-LLE can achieve the highest bit-rate reduction, which requires an increased complexity.

Table 3: Reference frames number set to achieve a trade-off between RD performances and complexity.
Method Reference frames Execution time in % Bit-rate gain in %

number
TM-A 3 157 -5.14
TM-LLE 3 156 -5.83
ITM-LLE 1 276 -6.33
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Figure 8: Coding performances obtained with the different proposed inter-frame prediction methods as a function of the number of reference
frames.

4.3.3. Impact of the search window size
Fig. 10 shows how the bit-rate reductions for each method vary as a function of the search window range. Fig.

11 shows the corresponding complexity. Table 4 gives the coding gains and corresponding execution time when the
search window range is set to achieve a satisfying trade-off between RD performances and complexity. The number
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Figure 9: Encoder complexity obtained with the different proposed inter-frame prediction methods as a function of the number of reference frames.

of reference frames is not fixed, and set depending on this range. The search window range is first set to 16, with
4 reference frames, then set to 32, with 4 reference frames, and finally set to 64, with 1 reference frame. The last
configuration was chosen with only 1 reference frame in order to limit the complexity. However, the same amount of
patches is available for the K-NN search for the last two configurations.

We can see that the proposed methods can outperform the TM-A, reaching up to 7.20 % bit-rate savings for the
ITM-LLE method. As for the previous results, the highest bit-rate reduction can be achieved by the ITM-LLE method,
while the TM-LLE method allows a better trade-off between RD performances and complexity.

Table 4: Search window size set to achieve a trade-off between RD performances and complexity.
Method SW range Execution time in % Bit-rate gain in %
TM-A 32 213 -5.30
TM-LLE 32 249 -5.89
ITM-LLE 16 207 -4.94
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Figure 10: Coding performances obtained with the different proposed prediction methods as a function of the SW range and the number of reference
frames.
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Figure 11: Encoder complexity obtained with the different proposed prediction methods as a function of the SW range and the number of reference
frames.

4.4. Combining intra-frame and inter-frame LLE-based prediction methods
In this section, we focus on the integration of both intra-frame and inter-frame prediction based on LLE. As in

[10], the LLE-based Intra prediction method uses both TM-LLE and oITM-LLE prediction techniques in competition,
integrated in H.264 by replacing two of the eight directional modes. The replaced modes are the least statistically used.
The proposed Intra method is allowed for 8×8 and 4×4 partitions. The method is here denoted Intra TM/oITM-LLE.
Note that this method is not only applied to I frames, but also to P and B frames. The method chosen for LLE-based
Inter prediction is TM-LLE, since it allows a good trade-off between complexity and coding performances, and is here
denoted Inter TM-LLE. First, the RD and complexity performances are assessed, followed by an in-depth analysis of
the encoder behavior. For the Intra TM/oITM-LLE method, K is set to 32, the search range is set to 32, and L is set
to 8. For the Inter TM-LLE method, K is set to 8, the search range is set to 32, with 1 reference frame.

Table 5 shows the coding performances achieved with the Inter TM-LLE method alone, the Intra TM/oITM-LLE
method alone, and the combination of both methods, against the H.264 reference. Table 6 shows the corresponding
encoder complexity. The results demonstrate that the LLE-based inter-frame and intra-frame prediction methods are
complementary, especially when evaluating the coding gains of the proposed methods for each sequence separately.
We can see that the combined Inter TM-LLE alone and Intra TM/oITM-LLE methods can achieve up to 15.31 %
bit-rate saving.

Note that, even with the combined methods, the percentage of extra-information (flag indicating if the LLE-based
method is used and the index for the oITM-LLE method) only amounts in average to two to three percents of the
complete bit-rate.

Table 5: Coding gains (in %) for the Inter TM-LLE, Intra TM/oITM-LLE and combined methods for each sequence.
Sequence Inter TM-LLE Intra TM/oITM-LLE Inter TM-LLE and

Intra TM/oITM-LLE
Foreman -2.73 -1.68 -4.40
Rushes -5.15 -2.90 -7.27
Matrix -2.43 -6.53 -6.47
City -6.57 -3.60 -8.80
Spincalendar -7.95 -6.60 -15.31
Average -4.97 -4.26 -8.45

Fig. 12 shows the coding performances, averaged over all sequences, of the combined methods as a function of
the frame type. For I frames, only the Intra TM/oITM-LLE method is used, and the bit-rate saving reaches 5.92 %.
For the P and B frames, the bit-rate saving reaches 7.20 % and 9.27 % respectively, which shows the gain brought by
the LLE-based Inter prediction.
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Table 6: Encoder complexity (in %) for the Inter TM-LLE, Intra TM/oITM-LLE and combined methods for each sequence.
Sequence Inter TM-LLE Intra TM/oITM-LLE Inter TM-LLE and

Intra TM/oITM-LLE
Foreman 101.34 154.81 210.73
Rushes 98.89 148.47 202.59
Matrix 89.85 187.80 171.14
City 94.38 119.13 233.52
Spincalendar 93.39 167.93 426.61
Average 95.57 155.63 248.92
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Figure 12: Coding performances of the combination of both Inter TM-LLE and Intra TM/oITM-LLE as a function of the frame type.

Fig. 13 shows the mode distribution, averaged over all sequences, as a function of the frame type. For I frames,
the Intra TM/oITM-LLE method only accounts for 12.11 % of the selected modes. Paradoxically, this little amount
of selection shows the method efficiency, since it still brings a significant bit-rate reduction. For the P frames, the
combined LLE-based methods account for 25.98 % of the selected modes, which is more than the MCP mode (16.39
%) and the Skip mode (25.25 %). For the B frames, the combined LLE-based methods account for 19.42 % of the
selected modes, which is more than the MCP mode (6.79 %), but less than the Skip mode (58.11 %). Although
it is less selected than for the P frames, the combined LLE-based methods coding gains for the B frames are still
significant (as shown in Fig. 12), since it is accumulated over more frames. Thus, we can see that the combined
LLE-based methods amount for a significant part of the selected modes for the temporal frames.

Fig. 14 shows the mode distribution for all frames, averaged over all sequences, as a function of the quantization
parameter. The results show that the mode distribution strongly varies depending on the bit-rate. The Inter TM-LLE
method is much more selected at high bit-rates (QP-I 22), while at low bit-rates (QP-I 37), the Skip mode is the most
selected mode. As explained in section 4.1, the LLE-based methods are mainly effective for high-frequency pseudo-
periodic textures, which are well preserved at high bit-rates, but on the contrary over-smoothed at low bit-rates, which
tends to favor the skip mode.

The City sequence is a good example to illustrate this kind of behavior. The RD curves of H.264 and the combined
LLE-based methods for this sequence are displayed in Fig. 15, and clearly show that the RD performances of the
combined LLE-based methods are better at high bit-rates.

5. Perspective: extension to HEVC

Even if the experiments were performed in H.264, our results still hold in HEVC. In fact, the prediction tools in
HEVC follow the same principle as those used in H.264: directional propagation modes for intra-frame prediction
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Figure 13: Distribution of the selected prediction modes as a function of the frame type.
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Figure 14: Distribution of the selected prediction modes as a function of the quantization parameter.

and motion estimation/compensation for inter-frame prediction. Our results show that the proposed methods are
complementary with the standard tools, and improve the RD performance. Template-based prediction methods were
extensively studied in H.264, and recent work shows that they can be effectively used in HEVC [13][15]. We expect
our methods to outperform these techniques, as they yield a better prediction quality. The proposed methods are meant
to be in competition with the standard intra-frame and inter-frame prediction tools, which would require applying them
to different PU sizes. In fact, the numerous PU sizes, and especially the larger ones, are known to be an effective tool
of HEVC [16]. The other tools responsible for HEVC efficiency, such as different transform sizes, SAO, are directly
compatible with our methods.

6. Conclusion

In this paper, we have introduced new inter-frame prediction methods for video compression based on LLE. The
proposed methods rely on the same multi-patches combination with different K-NN search strategies which are aided
or not by motion information. It is shown that the methods that are not aided by the motion information give the
best coding performances. This shows that our approach is an interesting alternative mode, complementary to current
video compression techniques. The different methods can significantly improve the coding efficiency compared to the
H.264 reference software, and the best methods outperform the state-of-the-art TM-A.

Through different experiments, we showed that the proposed methods are not extremely sensitive to the key pa-
rameters in terms of RD performances. However, the tuning of these parameters can be used to reduce the complexity.
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Figure 15: Rate-Distortion performances of the City sequence.

The oITM-LLE method reaches the highest bit-rate reduction, which requires in return a high computation time. Nev-
ertheless, when applying the oITM-LLE method to intra-frame prediction, and combined with a less complex method
such as TM-LLE for inter-frame prediction, we showed that significant bit-rate saving can be obtained for a reasonable
complexity cost.

Furthermore, the complexity essentially comes from the K-NN search for which efficient and fast methods exist
[19][20], as well as hardware acceleration modules. In particular, matching methods based on hash functions have
been recently introduced to perform efficient NN search [21][22], and have been used to improve HEVC for screen
content coding. This process is also highly parallelizable and much reduced execution times can therefore be expected.
The study instead focused on the assessment of the coding performances and not on the development of an optimized
paralellized implementation. Note that such optimized implementation could also allow to refine the K-NN search to
sub-pel level, so LLE-based methods could potentially be combined with up-sampling filters.

7. Annex

Figure 16: Frame from the “Foreman” sequence.
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Figure 17: Frame from the “Rushes” sequence.

Figure 18: Frame from the “Matrix” sequence (not representative of the whole sequence).
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Figure 19: Frame from the “City” sequence.

Figure 20: Frame from the “Spincalendar” sequence.
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