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Abstract—In this paper, we propose a novel scheme for scalable
image coding based on the concept of epitome. An epitome can
be seen as a factorized representation of an image. Focusing
on spatial scalability, the enhancement layer of the proposed
scheme contains only the epitome of the input image. The pixels
of the enhancement layer not contained in the epitome are then
restored using two approaches inspired from local learning-based
super-resolution methods. In the first method, a locally linear
embedding model is learned on base layer patches and then
applied to the corresponding epitome patches to reconstruct the
enhancement layer. The second approach learns linear mappings
between pairs of co-located base layer and epitome patches.
Experiments have shown that significant improvement of the
rate-distortion performances can be achieved compared to an
SHVC reference.

Index Terms—Epitome, super-resolution, scalable image cod-
ing, SHVC

I. INTRODUCTION

The latest HEVC standard [1] is among the most efficient
codec for image and video compression [2]. However, the
ever increasing spatial and/or temporal resolution, bit depth, or
color gamut of modern images and videos, coupled with the
heterogeneity of the distribution networks, calls for scalable
coding solutions. Thus, a scalable extension of HEVC named
SHVC was developed [3], [4], which can encode enhance-
ment layers with the scalability features mentioned above
by using the appropriate inter-layer processing. Experiments
demonstrate that SHVC outperforms simulcast as well as the
previous scalable standard SVC [5]. In this paper, we focus
on spatial scalability and we propose a novel scalable coding
scheme based on the concept of epitome, first introduced
in [6], [7]. The epitome in [6] is defined as patch-based
appearance and shape probability models learned from the
image patches. The authors have shown that these probability
models, together with appropriate inference algorithms, are
useful for content analysis, inpainting or super-resolution. A
second form of epitome has been introduced in [8] which
can be seen as a summary of the image. This epitome is
constructed by searching for self-similarities within the image
using methods such as the KLT tracking algorithm. This
type of epitome has been used for still image compression
in [9] where the authors propose a rate-distortion optimized
epitome construction method. The image is represented by
its epitome together with a transformation map as well as
a reconstruction residue. A novel image coding architecture
has also been described in [10] which, instead of the classical
block processing in a raster scan order, inpaints the epitome
with in-loop residue coding.

We describe in this paper a novel spatially scalable im-
age coding scheme in which the enhancement layer is only
composed of the input image epitome. This factorized rep-
resentation of the image is then used at the decoder side

to reconstruct the missing enhancement layer pixels (i.e. not
belonging to the epitome) using single-image super-resolution
(SR) techniques. Single-image SR methods can be broadly
classified into two main categories: the interpolation-based
methods [11]–[13] and the example-based methods [14]–[22]
which we consider here, focusing on two different techniques
based on neighbor embedding [16] and linear mappings [20].
The epitome patches transmitted in the enhancement layer
(EL) and the corresponding base layer (BL) patches form
a dictionary of pairs of high-resolution and low-resolution
patches.

The first method based on neighbor embedding assumes that
the BL and EL patches lie on two low and high resolution
manifolds which share a similar local geometrical structure.
In order to reconstruct an EL patch not belonging to the
epitome, a local model of the corresponding BL patch is
learned as a weighted combination of its nearest neighbors
in the dictionary. The restored EL patch is then obtained by
applying this weighted combination to the corresponding EL
patches in the dictionary. The second approach based on linear
mappings rely on a similar assumption, but directly models a
projection function between BL patches and the corresponding
EL patches in the dictionary. The projection function is learned
using multivariate regression and is then applied to the current
BL patch in order to obtain its restored EL version. This
super-resolution step reconstructs the full enhancement layer
while we only transmit the epitome. The proposed scheme
thus allows reaching significant bit-rate reduction compared
to traditional scalable coding schemes such as SHVC.

This paper is organized as follows. In section II we review
the background on epitomic models. Section III describes the
proposed scheme, the epitome generation and encoding at the
encoder side, and the epitome-based restoration at the decoder
side. Finally, we present in section IV the results compared
with SHVC.

II. BACKGROUND ON EPITOMES

The concept of epitome was first introduced by N. Jojic
and V. Cheung in [6], [7]. It is defined as the condensed
representation (meaning its size is only a fraction of the
original size) of an image signal containing the essence of the
textural properties of this image. This original epitomic model
is based on a patch-based probabilistic approach. It was shown
to be of high “completeness” in [23], but introduces undesired
visual artifacts, which is defined as a lack of “coherence”.
The original epitomic model was also extended into a so-
called Image-Signature-Dictionary (ISD) optimized for sparse
representations [24].

The aforementioned epitomic models have been success-
fully applied to segmentation, de-noising, recognition, index-
ing or texture synthesis. The model of [6], [7] was also used
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Fig. 1. Epitome of a Foreman frame (left) and the corresponding reconstruc-
tion (right).

in [25] for intra coding. However, this epitomic model is not
designed for image coding applications, and thus have to be
coded losslessly, which limits the compression performances.

The epitome construction method used in this paper is thus
inspired from the approach introduced in [9]. This epitomic
model is dedicated to image coding, and was inspired by
the factorized image representation of Wang et al [8]. In this
approach the input image I is factored in an epitome E, which
is composed of disjoint texture pieces called epitome charts.
From this factored representation, a reconstruction I ′ of the
input image is then obtained (see Fig. 1). For that purpose, the
input image is divided into a regular grid of non-overlapping
blocks Bi (block-grid) and each block is reconstructed from an
epitome patch. A so-called assignation map links the patches
from the epitome to the reconstructed image blocks. This epit-
omic model is obtained through a two-step procedure which
first searches for the self-similarities within the input image,
and then iteratively grows the epitome charts. The second
step for creating the epitome charts is notably based on a
rate-distortion optimization (RDO) criterion, which minimizes
the distortion between the input and the reconstructed image
together with the rate of the epitome, evaluated as its number
of pixels.

A still image coding scheme based on this epitomic model
is also described in [9], where the epitome and its associated
assignation map are encoded. The reconstructed image can
thus be used as a predictor, and the corresponding prediction
residue is further encoded. The results show that the scheme
is efficient against H.264 Intra. However, the coding perfor-
mances of the assignation map are limited, which reduces the
overall rate-distortion (RD) gains.

A novel coding scheme was thus proposed in [10], where
only the epitome is encoded. The blocks not belonging to the
epitome are then predicted in an inpainting fashion, together
with an in-loop encoding of the residue. The prediction tools
notably include efficient template-based neighbor embedding
techniques such as the Locally Linear Embedding (LLE) [26],
[27]. The results show that significant bit-rate savings are
achieved with respect to H.264 Intra.

In the next section, we describe the proposed scheme, which
can be seen as an extension of the latter work to scalable
coding.
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Fig. 2. Two steps clustering-based self-similarities search.

III. EPITOMIC ENHANCEMENT LAYER FOR SCALABLE
IMAGE CODING

In this section, we describe a spatially scalable coding
scheme in which the enhancement layer only consists in an
epitome of the input image. Although the principle could be
extended to more layers, for sake of simplicity we describe and
validate a two-layer coding scheme in which a low resolution
version of the input image is first compressed using HEVC
and transmitted as the base layer. The epitome transmitted as
the enhancement layer (that we denote epitomic enhancement
layer hereafter) is then used at the decoder side to restore
the complete image at the enhanced resolution and quality.
More precisely, the epitomic EL is encoded using SHVC.
No EL residue is transmitted for the pixels not belonging
to the epitome, which are then restored using local learning-
based super-resolution techniques exploiting pairs of patches
from the decoded epitomic EL and the corresponding BL
patches. Note that this restoration step is only applied as
post-processing after decoding of the epitomic EL, and is not
used as an inter-layer prediction tool. The proposed scheme is
depicted in Fig. 3. We first describe the epitome construction
and encoding method and then explain how the epitome and
the base layer are jointly used to reconstruct the image at the
full resolution.

A. Epitome generation

The epitome generation method is inspired from the one
described in [9] and consists in first searching for patch
similarities within the image, the matching patches being then
used to construct the so-called epitome charts. Unlike [9],
the search for best matching patches is done using a fast
clustering-based technique [28], and the criterion used for
the chart creation is a simple error minimization instead of
a rate-distortion optimization criterion. We observed that the
RDO criterion had limited impact on the proposed scheme
compression performances.

1) Self-similarities search: The goal of this step is to
find for each block Bi ∈ I a list of matching patches
ML(Bi) = {Mi,0,Mi,1, ...}, such that the mean square error
(MSE) between a block and its matching patches is below a
matching threshold εM . This parameter eventually determines
the size of the epitome, and several values are considered
in the experiments (see Table III). In this paper, the lists of
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Fig. 3. Proposed scheme for scalable image coding. At the encoder side, an epitome of the input image is generated, and encoded as the enhancement layer.
At the decoder side, the enhancement layer patches not contained in the epitome are reconstructed from the base layer and the epitomic enhancement layer.

matching patches are obtained through a two steps clustering-
based approach illustrated in Fig. 2. The first step consists
in grouping together similar blocks into clusters, so that the
distance from a block to the centroid of its cluster is below an
assignation threshold εA. In practice, this threshold is set to
εA = 0.5 ∗ εM . In the second step, a list of matching patches
is computed for each cluster by finding patches whose MSE is
inferior to εM with respect to the block closest to the cluster
centroid. This list of matching patches is then assigned to all
the blocks in the cluster.

From all the lists of matching patches ML(Bi), we can
then compute reverse lists RL(Mj) = {Bj , Bl, ...} which
indicate the set of image blocks that can be represented by
each matching patch. Next, we describe how these lists are
used to build the epitome charts.

2) Epitome charts creation: The epitome charts are iter-
atively grown, and both the initialization and the iterative
extension of an epitome chart are based on a criterion which
minimizes the error between the input image I and the
reconstructed image I ′.

Formally, we denote ∆ECm,m = 0, ...,M − 1 a set
of candidate regions to add to the epitome, where M is
the number of candidates. The set of all candidate regions
correspond to the set of all the matching patches computed at
the previous step which are not yet included in the epitome.
When initializing a new epitome chart, a valid candidate region
is a matching patch which is not yet in an epitome chart and
is spatially disconnected from any existing epitome chart. On
the contrary, when extending an epitome chart EC, a valid
candidate region is a matching patch which is not yet in
an epitome chart and overlaps with EC (see Fig. 4). The
actual region added to the epitome ∆ECopt is obtained by
minimizing the following criterion:

∆ECopt = arg min
∆ECm

(MSE(I, I ′m)) (1)

where I ′m is the reconstructed image when the candidate region
∆ECm is added to the epitome, and the MSE function
computes the mean square error between I ′m and the source
image I . The reconstructed image I ′m comprises the blocks
reconstructed from the existing epitome charts and the new
blocks contained in the list RL(∆ECm). During the extension

of an epitome chart, additional reconstructed blocks can be
obtained by considering the so-called inferred blocks, which
are the potential matching patches that can overlap between
the current chart EC and the extension ∆ECm (see Fig. 4).
Note that for the pixels of I ′m which are not reconstructed,
the MSE can not be computed directly. In our implementation,
we assign the maximal MSE value to these pixels. This tends
to favor the selection of a candidate region ∆ECm which
reconstructs large regions in I ′m, and thus speed up the epitome
chart creation. We illustrate the principle of the epitome chart
extension and initialization in Fig. 4.

The extension of an epitome chart stops when no more valid
candidate regions can be found. A new epitome chart is then
initialized at a new location. The global process stops when
the whole image I ′ is reconstructed.

B. Epitome encoding

The goal being to encode only the epitome as an enhance-
ment layer in a scalable coding scheme, the epitome charts
are padded to a fixed block size corresponding to a coding
unit (CU) size of the encoder. We use in our experiments the
SHVC standard, and the epitome blocks are padded to 8× 8
or 16× 16 blocks (see Table I). These blocks are then coded
using the inter-layer prediction mechanism of SHVC, followed
by the SHVC transform and quantization coding tools.

Since the relevant texture information we want to transmit is
only contained in the epitome blocks, the blocks not belonging
to the epitome are replaced by the up-sampled decoded base
layer to create the entire epitomic EL, as shown in Fig. 5.
In practice we use the same up-sampling filter as in the
SHVC inter-layer processing. When encoding this epitomic EL
with SHVC, the bit-rate of most non-epitome blocks is thus
negligible thanks to exact inter-layer prediction. This allows
to reduce the bit-rate allocated to these blocks without having
to modify the SHVC syntax. Note that due to the recursive
quad-tree partitioning, some non-epitome blocks may not be
exactly predicted if the CU size is different from the epitome
block size. We observed in practice that this concerns few
blocks, and in fact the epitomic EL bit-rate decreases with the
epitome size compared to the baseline SHVC EL (see section
IV-B).
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Fig. 4. Example of epitome chart extension. At a step n, we consider
3 valid candidate regions ∆ECm to extend a current epitome chart EC.
These candidate regions correspond to matching patches position found in
the original image during the self-similarities search which spatially overlap
with EC. Invalid candidates which do not overlap with EC are shown as
dashed black blocks. The candidate region minimizing the criterion of Eq. 1
(∆EC1 in this example) is added to EC at the step n+1. The image blocks
reconstructed by ∆EC1 are added to I′. In this example a new valid candidate
appears at step n + 1. When no more valid candidate region is available to
grow the current epitome chart, a new epitome chart is initialized. Candidate
regions for the new epitome chart initialization are spatially disconnected
from the previously grown epitome chart. The candidate actually selected for
the initialization is again obtained by minimizing the criterion of Eq. 1. The
process iterates until I′ is fully reconstructed.

When decoding the epitomic EL, the non-epitome blocks
consisting of up-sampled decoded BL texture need to be
restored (see next section). A binary map is sent to the decoder
in order to ensure that all the non-epitome blocks are identified
prior to the restoration step. We observed in practice that the
corresponding bit-rate does not account for a significant part
of the overall bit-rate (about 2% in average), and could be
even reduced using for example entropy coding.

C. Epitome-based restoration

After decoding the epitomic EL, the non-epitome part of
the enhancement layer is processed by considering N × N
overlapping patches, separated by a step of s pixels in both
rows and columns. After restoration, when several estimates

Input image Epitome

Epitome EL

BL

Up-sampled 

decoded BL

Fig. 5. Epitomic EL creation. The non-epitome blocks of the epitomic EL
are replaced by the up-sampled decoded BL (best viewed zoom in). Thanks
to exact inter-layer prediction, these blocks are thus encoded at a negligible
bit-rate.

are obtained for a pixel, they are averaged in order to obtain
the final estimate. Note that before performing the restoration,
the BL image is up-sampled to the resolution of the EL using
the inter-layer processing filter.

The restoration methods described below are derived from
local learning-based SR methods [16], [17], [20]–[22], and can
be summarized in the three following steps: K-NN search,
learning step, and reconstruction step. These steps are shown
in Fig. 6, and described in details below.

1) K-NN search: If we consider the current patch to be
processed y, we first search for its K-NN BL patches, within
search windows corresponding to the epitome charts locations
(see Fig. 6). The K-NN BL patches yi, i = 1 . . .K are
then stored in a matrix My which contains in its columns
the vectorized patches. For each neighbor yi, we have a
corresponding EL patch xi in the epitome, which is stored in
a matrix Mx. We thus obtain BL/EL pairs of training patches.
In classical SR applications, the pairs of training patches are
obtained from a dictionary, which construction is a critical step
[14]–[16], [18], [19], [21], [22]. Since here the patches in the
epitome are representative of the full image, we can consider
that they constitute a suitable dictionary to perform the local
learning-based restoration.

Next, we present the learning and reconstruction steps,
which exploit the correlation between the pairs of training
patches to perform learning-based restoration. We describe
two methods to restore the missing EL patches, inspired by
SR techniques based on neighbor embedding (NE) [16], [17],
[21] and linear mappings [20]–[22], but any other learning-
based method could be included in the proposed scheme.
Note that many SR methods can be improved using iterative
back-projection [29], which enforces the high resolution recon-
structed image to be consistent with the input low resolution
image. However, this technique will not be considered in the
proposed scheme, as it tends to propagate quantization noise
from the BL image to the EL reconstruction.

2) Epitome-based Locally Linear Embedding: First, we
describe a method relying on LLE, denoted “epitome-based
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Fig. 6. The K nearest neighbors of the current BL patch are found in search windows (SW) corresponding to the epitome charts. The BL/EL pairs of patches
can then be exploited to restore the current missing EL patch.

Locally Linear Embedding” (E-LLE). Similarly to other NE-
based restoration techniques, we assume that the local geom-
etry of the manifolds in which lie the BL and EL patches
is similar (see Fig. 7). Using LLE, we first learn the linear
combination of the K-NN BL patches which best approximate
the current patch, and then apply this linear combination to the
corresponding EL patches in order to obtain a good estimate
of the missing EL patch.
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Fig. 7. Two steps local learning-based restoration based on LLE.
Let W be the vector containing the combination weights

wi, i = 1 . . .K. The weights are obtained by solving the
following equation:

min
W
||y −MyW ||22 s.t.

K∑
i=1

wi = 1 (2)

The weights vector W is computed as:

W =
D−11

1TD−11
. (3)

The term D denotes the local covariance matrix (i.e., in
reference to y) of the K-NN stacked in My , and 1 is the

column vector of ones. In practice, instead of an explicit
inversion of the matrix D, the linear system of equations
DW = 1 is solved, then the weights are rescaled so that
they sum to one.

The restored EL patch is finally obtained as:

x̂ = MxW. (4)

In practice, several versions of this method can be de-
rived, e.g. by using another NE-based technique such as non-
negative matrix factorization [30], or by adapting the weights
computation as in the non-local mean algorithm (exponential
weights) [31]. However, with such methods the weights are
only computed based on the BL patches. In the next section,
we propose a method which aims at better exploiting the
correlation between the pairs of training patches, based on
linear regression.

3) Epitome-based Local Linear Mapping: We describe here
a method based on linear regression, that we denote “epitome-
based Local Linear Mapping (E-LLM)”. We want to further
exploit the correlation between the pairs of training patches
by directly learning a function mapping the BL patches to the
corresponding EL patches (see Fig. 8). This function can then
be applied on the current patch to restore the EL patch.

The mapping function is learned using multivariate linear
regression. The problem is then to search for the function
represented by the matrix P minimizing:

E = ||MT
x −MT

y PT ||2 (5)

which is of the form ||Y−XB||2 (corresponding to the linear
regression model Y = XB + E). The minimization of Eq. (5)
gives the least squares estimator

P = MxMT
y (MyMT

y )−1 (6)
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patches using multivariate linear regression.
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b) Reconstruction: the function learned previously is applied on the
current BL patch in order to obtain the restored EL patch.

Fig. 8. Two steps local learning-based restoration based on linear regression.

We finally obtain the restored EL patch as:

x̂ = Py (7)

Now that we have formally defined the proposed methods,
we study their performances in the next section.

IV. SIMULATIONS AND RESULTS

A. Experimental conditions

The experiments are performed on the test images listed in
Table I, obtained from the HEVC test sequences. This set of
images was specifically selected with various characteristics in
terms of textures and at different resolutions. The base layer
images are obtained by down sampling the input image with
a factor 2×2, using the SHVC down-sampling filter available
with the SHM software (ver. 9.0) [32]. The BL images are
encoded with HEVC, using the HM software (ver. 15.0) [33].

We then use the SHM software (ver. 9.0) [32] to encode
the corresponding enhancement layers. Thanks to the hybrid
codec scalability feature of SHVC, the decoded BL images
are first up-sampled using the separable 8-tap SHVC filter
(−1, 4,−11, 40, 40,−11, 4,−1), and directly used as input to
the SHM software. Both layers are encoded with the following
quantization steps: QP = 22, 27, 32, 37.

In this section we aim to evaluate the performances of
the proposed scheme depending on the size of the epitome,
which is determined by the matching threshold parameter.
Thus for each image, 3 to 4 matching threshold values εM are
considered in order to yield similar epitome sizes, going from
30% to 90% of the input image size. The selected matching
thresholds and corresponding epitome sizes are shown in Table
III.

The epitome-based restoration is performed using N×N =
8 × 8 overlapping patches, with an overlapping step s = 3.
We set the number of nearest neighbors to K = 20.

TABLE I
TEST IMAGES

Class Image Size Epitome
block size

B BasketballDrive 1920 × 1056 16 × 16
B Cactus 1920 × 1056 16 × 16
B Ducks 1920 × 1056 16 × 16
B Kimono 1920 × 1056 16 × 16
B ParkScene 1920 × 1056 16 × 16
B Tennis 1920 × 1056 16 × 16
B Terrace 1920 × 1056 16 × 16
C BasketballDrill 832 × 480 8 × 8
C Keiba 832 × 480 8 × 8
C Mall 832 × 480 8 × 8
C PartyScene 832 × 480 8 × 8
D BasketballPass 416 × 240 8 × 8
D BlowingBubbles 416 × 240 8 × 8
D RaceHorses 416 × 240 8 × 8
D Square 416 × 240 8 × 8
E City 1280 × 704 16 × 16
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Fig. 9. Average epitome bit-rate gains compared to SHVC depending on
the epitome size. Note that these results do not reflect the compression
performances as the image quality is not taken into account.

B. Bit-rate reduction

We first evaluate in this section the bit-rate reduction
obtained with the proposed scheme compared to the SHVC
reference. Note that to assess the actual compression perfor-
mances the distortion must also be taken into account. Such
RD performances are given in the next section.

We give in Fig. 9 the average bit-rates gains (in %) depend-
ing on the epitome size, first for the EL only and then for both
BL and EL (including the binary map bit-rate). These results
show that decreasing the size of the epitome does reduce the
bit-rate of the EL, and consequently the overall bit-rate (BL
and EL). However, we show in the next section that the bit-
rate reductions observed in Fig. 9 are not directly converted
into RD performances improvement, as there is a trade-off
between the bit-rate reduction and the epitomic EL quality
which depends on the epitome size.

C. Rate-distortion performances

We assess in this section the RD performances of the
proposed scheme against the SHVC reference.



7

-15

-10

-5

0

5

10

15

20

25

40 45 50 55 60 65 70 75 80 85B
D

 r
at

e 
ga

in
s 

(%
)

Epitome size (% of input image)

RD performances depending on epitome size

E-LLE
E-LLM
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The distortion is evaluated using the PSNR of the decoded
EL, while the rate is calculated as the sum of both BL and EL
rates (including the binary map bit-rate). The RD performances
are computed using the Bjontegaard rate gains measure (BD-
rates) [34] over the four QP values.

We show in Fig. 10 the BD-rates averaged over all se-
quences depending on the epitome size. The complete results
are given in Table III. We can see that significant bit-rate
reduction can be achieved compared to SHVC, with more than
10% bit-rate reduction in average at best, and up to about
20% for images like Ducks, Kimono, or Tennis. The E-LLE
performs better than the E-LLM method, however, for the best
performances, both methods perform similarly.

Note that to obtain improved RD performances against the
SHVC reference, a compromise on the epitome size which
balances the bit-rate and the epitomic EL quality has to be
found. In fact, decreasing the epitome size reduces the bit-rate
(as shown in section IV-B), but it also lowers the quality of
the epitomic EL compared to SHVC. When the epitome size
is too small, this quality loss is not effectively compensated by
the restoration step, since only a reduced set of BL/EL patches
is provided, while more BL patches need to be processed. This
phenomenon is clearly observed in Figs. 10 and 12. Thus, we
can see an improvement of the RD performances when the
epitome grows. We show in Fig. 10 that RD performances
improvement can be obtained for epitome sizes ranging from
about 65% to 85% of the input image for the E-LLM method,
and about 55% to 85% of the input image for the E-LLE
method. However, increasing the epitome size up to 100% of
the input image would not lead to better RD performances, as
this corresponds to the SHVC EL reference.

In order to better understand the performances of the
proposed methods depending on the bit-rate, we show in Fig.
11 the RD curve of the City image for its best performances
(biggest epitome), which behavior is representative of the set
of test images. We can see that at high bit-rates (QP=22),
the bit-rate of the proposed scheme is especially reduced
compared to the SHVC reference EL. However, even with
the proposed epitome-based restoration, we observe a loss of
quality. At low bit-rates (QP=37), the bit-rate of the proposed
method is less reduced compared to the SHVC reference EL,
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Fig. 11. RD performances of the City image for both E-LLE and E-LLM
methods, epitome size = 91.59% of input image.
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but the epitome-based restoration yields a better quality. This
behavior explains the overall significant bit-rate reduction we
can achieve with the proposed scheme.

In addition, we show in Fig. 12 the RD curves of the LLE-
based restoration for the City image depending on the epitome
size. We can see that for smaller epitome sizes, at high bit-
rates (QP=22), even though the bit-rate is considerably reduced
compared to the SHVC reference EL, the quality loss does
not allow an improvement in the RD performances, which
corroborates our previous analysis.

We give in Figs. 15 and 16 visual examples of the en-
hancement layers for the City and Cactus images. Note that
these examples were chosen for their visual clarity, and do
not necessarily correspond to the best RD performances.
In order to demonstrate the relevance of the epitome-based
restoration step, we show on the top row the epitomic EL
before restoration, and on the bottom row the corresponding
EL after applying the E-LLE and E-LLM methods. Before
restoration, the blocks not belonging to the epitome are
particularly visible, as they are directly copied from the up-
sampled decoded BL, and clearly lack high frequency details.
An obvious improvement of the quality can be observed after
restoration for the high-frequency pseudo-periodic textures,
such as the building of Fig. 15, or the calendar of Fig. 16.
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Although the E-LLM usually yields lower PSNR than the E-
LLE method, we can see that it can perform visually better on
high-frequency stochastic textures such as in the highlighted
red rectangle of Fig. 16.

D. Elements of complexity

We give in this section some indications about the complex-
ity, evaluated as the running time of the proposed methods.
We evaluate the complexity depending on the epitome size
and input image size. The results are averaged for each image
class (which corresponds to an image size, see Table I).
Note that our implementations are not optimized, especially
the restoration methods were implemented in Matlab, while
the epitome generation algorithm was implemented in C++.
However, we give the running times of the SHVC codec for
comparison.

We give in Fig. 13 the complexity of the epitome generation.
We can see that the epitome generation running time mainly
varies depending on the input image size, while the epitome
size has a limited impact. For the biggest epitomes, which
correspond to the best RD results, we observed that in average
50% to 90% of the complexity is dedicated to the self-
similarities search step. As this step is highly parallelizable,
the total running time could be reduced by using a parallel
implementation, e.g. on GPU. The corresponding running
times for the SHVC encoder (BL and EL) are about 20s, 5s,
1s, and 10s for classes B, C, D and E respectively.

We show in Fig. 14 the complexity of the epitome-based
restoration step. The processing time is similar for both E-
LLE and E-LLM methods, and obviously increases with the
size of the image. However, we can observe that overall
the complexity is reduced for the biggest epitomes, which
interestingly corresponds to the best RD performances. In fact,
when transmitting bigger epitomes, less patches not belonging
to the epitome have to be processed. The corresponding
running times for the SHVC decoder (BL and EL) are about
0.33s, 0.14s, 0.07s, and 0.23s for classes B, C, D and E
respectively.

The simulations showed that in average, about 95% of
the restoration complexity is dedicated to the K-NN search.
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Fig. 14. Running time of the different epitome-based restoration methods
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The K-NN search was performed with the Matlab knnsearch
function, based on Kd-tree [35], [36]. In order to reduce
the total running time, the complexity of the K-NN search
could be further reduced by using more advanced approximate
nearest neighbor search [37]–[40] or parallel implementation,
possibly on GPU [41].

E. Extension to scalable video coding

The work presented in this paper is dedicated to scal-
able single image coding, however a straight extension to
scalable video coding can be considered by applying the
proposed method to each frame of the sequence. Preliminary
experiments are conducted on a set of 3 test sequences,
consisting of 9 frames with a CIF resolution in order to
limit the computation time. The SHVC configuration is set
to Random Access. The epitomes are generated using one
matching threshold value εM = 7.0. In order to exploit the
temporal redundancies, the K-NN search step is performed
in the epitomes of the two closest frames in addition to the
current one.

We show the RD performances measured with the Bjonte-
gaard rate gains in Table II. These preliminary results indicate
that the proposed scheme is also expected to bring significant
bit-rate reduction when extended to full video sequences.
These results are not obvious to predict, since the inter layer
prediction is here also competing with inter frame prediction
modes, which are much more efficient than the intra prediction
modes.

TABLE II
BJONTEGAARD RATE GAINS AGAINST SHVC

Sequence Epitome size (%) BD rate gains (%)
(averaged over all frames) E-LLE E-LLM

City 56.66 -26.56 -26.59
Macleans 79.93 -2.24 -2.15
Mobile 82.22 -10.12 -10.20

V. CONCLUSION AND FUTURE WORK

We propose in this paper a novel scheme for scalable image
coding, based on an epitomic factored representation of the
enhancement layer and appropriate restoration methods at the
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decoder side. Significant bit-rate reduction is achieved for
the spatial scalable application when compared to the SHVC
reference EL. These achievements were possible because of
the specific epitomic model we used, which provides relevant
texture information and is especially suitable for scalable
encoding. Note that improvements of the standard tools have
been recently proposed, such as the generalized inter-layer
residual prediction [42]–[44], or enhanced in-loop prediction
mechanism for the EL [45], [46]. The proposed approach
is compatible with such improvement of scalable coding
schemes, as the coding of the epitome as an enhancement
layer would be improved as well.

The proposed scheme could be improved by studying alter-
native restoration approaches. For instance, different regres-
sion could be considered for the E-LLM instead of the direct
least-square approach, such as (Kernel) Ridge Regression [21],
[47]. Alternatively, the restoration step at the decoder side
could be considered as an inpainting problem with prior
knowledge on the “holes” to be filled in the form of low
resolution patches. Inpainting has been extensively studied
over the last decades (see [48] and reference therein for more
details), and the exemplar-based multi-scale approaches [49],
[50] are well suited in our context.

Future work also includes the adaptation of the proposed
scheme for scalable video coding, as preliminary results in-
dicate promising RD performances. The epitomes were here
generated separately for each frame. The RD performances
would benefit from an epitomic model which takes into
account the temporal redundancies. Furthermore, the image
self-similarities in the current epitome are found using a
single block matching algorithm, while the application at
the decoder side is based on multi-patches techniques. New
epitomic models have been designed to take into account the
epitome application in the generation process. For example, an
epitome is proposed in [51] for multi-patches super-resolution,
which showed that a more compact representation can be
obtained for a similar image reconstruction quality. Such
model could thus be considered in the proposed scheme in
order to improve the RD performances, at the cost of an
increased complexity. In addition, the distortion minimization
criterion of Eq. 1 used for the epitome charts creation could
be changed into a rate-distortion optimization criterion, as in
[9]. Ideally, the distortion would be directly computed on the
restored EL instead of the reconstructed image, and the rate
directly evaluated as the EL rate.

Finally, the proposed scheme can be extended to other
scalable applications, such as color gamut or LDR/HDR
scalabilities. Even though we use LLE in this paper for super-
resolution, it has been proven efficient for many different
applications such as de-noising [52], image prediction [27], or
inpainting [48]. We can thus expect the LLE-based restoration
methods to be efficient for different scalable applications.
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Epitomic EL before restoration

Epitomic EL + E-LLE Epitomic EL + E-LLM

Fig. 15. City enhancement layer encoded with QP=22. The epitome size is 39.52% of the input image. Before restoration, we can clearly notice in the red
rectangle the blocks not belonging to the epitome from their blurry aspect. The quality of these blocks is obviously improved after restoration.

Epitomic EL before restoration

Epitomic EL + E-LLE Epitomic EL + E-LLM

Fig. 16. Cactus enhancement layer encoded with QP=22. The epitome size is 48.33% of the input image. Before restoration, we can clearly notice in the red
rectangle and in the calendar on the bottom right the blocks not belonging to the epitome from their blurry aspect. The E-LLM gives visually superior results
compared to the E-LLE for the stochastic texture highlighted in the red rectangle. Both methods improve the quality of the straight lines in the calendar.
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TABLE III
EXHAUSTIVE RESULTS FOR EACH TEST IMAGE AND MATCHING THRESHOLD.

(For Bjontegaard rate gains, the best rate saving is indicated in bold.)

Matching Epitome size Epitome rate gains (%) BD rate gains (%) Matching Epitome size Epitome rate gains (%) BD rate gains (%)
Threshold (% of input (rate only) (RD performance) Threshold (% of input (rate only) (RD performance)

εM image) EL only EL + BL E-LLE E-LLM εM image) EL only EL + BL E-LLE E-LLM
BasketballDrive BasketballDrill

9 90.62 -13.38 -8.94 -17.72 -17.25 25 87.05 -2.50 -1.82 -5.69 -4.66
16 64.10 -21.67 -14.52 -13.34 -10.98 49 59.94 -16.13 -11.51 -1.87 2.07
25 49.33 -29.66 -19.85 -10.89 -5.85 100 42.63 -28.89 -20.54 -0.84 5.24
49 32.34 -43.58 -29.18 -7.12 2.47 225 28.53 -42.39 -30.06 3.72 13.59

Cactus Keiba
16 79.85 -15.77 -10.61 -17.25 -15.50 16 93.59 -0.39 -0.26 -6.38 -6.08
25 71.24 -17.99 -12.10 -16.73 -14.14 49 81.28 -5.50 -3.63 -3.23 -1.52
49 60.66 -22.11 -14.88 -15.38 -11.98 100 63.53 -18.86 -12.43 3.88 8.35

100 48.33 -31.89 -21.41 -10.59 -6.31 225 40.77 -40.86 -26.93 16.38 23.80
Ducks Mall

49 89.63 -25.27 -16.75 -19.33 -18.87 9 92.95 -8.80 -6.33 -17.90 -16.46
100 77.41 -30.53 -20.36 -16.49 -13.97 49 76.28 -3.19 -2.31 -0.09 -1.66
225 48.28 -50.06 -33.54 3.03 10.45 100 66.15 -8.02 -5.79 -3.76 3.48

225 50.26 -20.05 -14.43 7.14 27.90
Kimono PartyScene

9 90.13 -22.22 -10.89 -19.63 -19.29 16 94.82 -0.56 -0.43 -5.29 -4.13
16 75.53 -58.38 -28.92 -14.29 -10.98 49 81.12 -4.34 -3.34 -0.68 7.75
25 59.36 -38.44 -18.96 -14.59 -12.29 100 67.56 -12.53 -9.65 9.53 26.67
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