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ABSTRACT

This paper describes a novel scheme to reduce the quantization
noise of compressed videos and improve the overall coding per-
formances. The proposed scheme first consists in clustering noisy
patches of the compressed sequence. Then, at the encoder side, lin-
ear mappings are learned for each cluster between the noisy patches
and the corresponding source patches. The linear mappings are then
transmitted to the decoder where they can be applied to perform de-
noising. The method has been tested with the HEVC standard, lead-
ing to a bitrate saving of up to 9.63%.

Index Terms: clustering, linear mapping, regression, de-noising,
HEVC.

1. INTRODUCTION

The main principles of modern video codecs, such as H.264 [1],
HEVC [2] or VP9 [3], first reside in the reduction of spatial and tem-
poral redundancies, through prediction tools. The prediction residue
is then transformed to further reduce the inner correlations of the sig-
nal, and the transformed coefficients are quantized to remove non-
perceptive information. The quantized transformed coefficients are
finally entropy coded to remove the remaining statistical redundan-
cies. The improvements achieved over the years in video compres-
sion have been made by carefully optimizing each of these steps.
For example, Intra prediction methods based on sparse representa-
tions have been proposed in [4], and later based on Locally Linear
Embedding (LLE) of patches [5][6]. The prediction methods based
on LLE have then been extended to spatio-temporal prediction in
[7]. Recent works also investigate new transforms or quantization
designs [8][9]. Despite the obvious improvement brought by these
techniques in terms of rate-distortion (RD) performances, the irre-
versible quantization step still results in a degradation of the recon-
structed frames.

In this paper, we adopt a different perspective by proposing a
novel and generic out-of-the-loop de-noising scheme, complemen-
tary to the aforementioned works. Contrary to most state-of-the-art
de-noising methods, the proposed scheme does not rely on an ad-
ditive white Gaussian noise (AWGN) model. In fact, it is known
that the quantization noise fall outside these assumptions [10], and
explicit modeling of this type of noise is difficult. Thus, even top
performing de-noising techniques such as the block-matching 3D al-
gorithm (BM3D) [11] have a limited efficiency in our context.

The proposed approach first consists in clustering patches ex-
tracted from the reconstructed sequence. This clustering step can
thus be performed at both the encoder and the decoder side. At the
encoder side, we then learn for each cluster a projection function

between the degraded patches and the corresponding source patches
from the input sequence. These projection functions are then trans-
mitted to the decoder, where they can be applied for each cluster in
order to enhance the degraded patches quality.

The rest of this paper is organized as follow. Section 2 reviews
related work on image de-noising. Section 3 describes the proposed
clustering-based quantization noise removal scheme. Experimental
results are then discussed in section 4.

2. RELATED WORK

Video codecs such as H.264 [1] and HEVC [2] use in-loop deblock-
ing filters to address blocking artifacts [12], which are the most visi-
ble artifacts due to the block transform and quantization. Compared
to previous video compression standards, HEVC also introduced a
Sample Adaptive Offset filter in addition to the deblocking filter.
HEVC is thus a challenging codec for noise removal applications,
and for this reason it was chosen to perform the experiments (see
section 4).

However, these in-loop filters are designed with a minimal com-
plexity, and thus have a limited efficiency. On the other hand, image
de-noising has been a very active research topic, and more complex
and efficient methods have been proposed. The BM3D is a two steps
algorithm [11] and among the best de-noising methods [13], as it
combines the strengths of several previous de-noising approaches. It
thus exploits non-local similarities as in the Non-Local Mean (NLM)
algorithm [14], as well as filtering in the transform domain, such as
in [15] [16].

For the sake of conciseness, we briefly describe here the first step
of the BM3D algorithm, which shows the main principles used in
this algorithm. Each block of pixels in the noisy image is stacked
into a 3D group along with its nearest neighbors, in the sense of the
Euclidean distance. A 3D transform is then applied on each group,
and the coefficients are filtered using hard thresholding. The de-
noised estimates are then obtained by applying the inverse 3D trans-
form. Advantageously, all the blocks of the 3D group are processed
at once. Several estimates are thus obtained for each pixel, which are
eventually aggregated to obtain the final estimate. In the second step
of BM3D, the estimate from the first step is used to perform Wiener
filtering in the 3D transform domain.

More sophisticated noise models than AWGN have been pro-
posed, such as the signal dependent noise model [17]. However,
the main approaches to remove such noise eventually rely on tech-
niques designed for AWGN. Such techniques in fact assume that the
noisy image can be partitioned into segments or clusters for which
the noise can be modeled by AWGN [18][19].

Recent efficient de-noising methods also rely on sparse repre-



sentations [20][21][22] or the local learning of dictionaries through
clustering [23][24]. Nonetheless, it was shown that these methods
are usually outperformed by the BM3D algorithm [13], which we
thus choose to perform some experiments in section 4.

3. CLUSTERING-BASED QUANTIZATION NOISE
REMOVAL FOR COMPRESSION

In this section we describe the proposed compression scheme im-
provement using clustering-based linear mappings learning for noise
removal.

3.1. Proposed scheme for compression

We note Md and Ms the matrices containing in their columns the
vectorized M ×N patches extracted from the decoded sequence Y
and the source sequence X respectively.

The main idea of the proposed scheme is represented in Fig. 1,
and consists in the following steps:

• At the encoder side:

– cluster the decoded patches Md

– for each cluster c, learn a linear mapping Pc between
the decoded patches Mc

d and the corresponding source
patches Mc

s by minimizing ||Mc
s
T −Mc

d
T PT

c ||2

– encode the corresponding linear mappings (in matrix
form) and transmit them to the decoder

• At the decoder side:

– decode the linear mappings

– cluster the decoded sequence Md, as it is performed at
the encoder side

– for each cluster c, apply the corresponding linear map-
ping Pc to the decoded sequence patches Mc

d to obtain
the de-noised patches Mc

r:

Mc
r = PcMc

d (1)

We can see that the proposed method does not rely on any assump-
tion on the noise model. We can thus apply this scheme to different
codecs, and expect it to be robust to new designs of transform or
quantizations which could affect the quantization noise.

Furthermore, we can combine our method to existing de-noising
techniques, which only partially remove the noise in our context.
We thus propose an alternative two steps scheme, where a blind de-
noising algorithm is first performed on the decoded frames, before
applying the proposed method (see Fig. 1). The matrix Md then
contains in its column the vectorized de-noised patches. We qualify
this first pass de-noising as “blind” because no parameters should
be transmitted between the encoder and the decoder side, so that
there is no bit-rate increase. In practice, some parameters that have
a negligible rate cost are sent.

We discuss more in details the different steps of the approach in
the following sections.

3.2. Clustering

The clustering is performed on M ×N non-overlapping patches ex-
tracted from the decoded frames. Any clustering algorithm is eligi-
ble for the proposed method, as long as it can be performed similarly
at the encoder and the decoder side. We choose the popularK-means
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Fig. 1. Proposed compression scheme using noise removal based on
clustering and linear mappings learning.

algorithm [25]. Note that some tests performed with more advanced
clustering methods, such as spectral clustering [26], showed that the
de-noising performances were in the end very similar, despite the
increased complexity.

Selecting the number of clusters K is crucial for the overall
RD performances, as increasing K improves the de-noising per-
formances, but also the bit-rate associated to the linear mappings.
Empirical results show that 10 is a good order of magnitude for K
(see section 4). However, a more specific tuning of K depending
on the video content and the target bit-rate can improve the final RD
performances. To address this problem, we present below an adap-
tive method for selectingK, based on an rate-distortion optimization
(RDO) criterion.

Instead of explicitly partitioning the data into K clusters, we pro-
pose a recursive binary partitioning, which proceeds as follow:

• At initialization, the full data set is considered as one cluster.

• Each cluster is then recursively split into 2 clusters if the RDO
criterion (explained below) is satisfied, creating a binary tree
structure.

• The procedure stops when no RDO criterion is satisfied, or a
pre-defined maximum tree depth is reached.

The RDO criterion used to decide to further split a cluster is de-
signed to balance the de-noising performances and the linear map-
pings rate cost. Given a cluster Cn and its corresponding mapping
Pn, we can allocate it a RD cost computed as:

RDn = Dn + λRn (2)

The distortion Dn is computed as the Sum of Squared Error (SSE)
between the patches of Cn de-noised with Pn and the corresponding
source patches. The rateRn is estimated as the number of bits of the
encoded mapping Pn. The lagrangian parameter is computed as in
the test model of HEVC:

λ = QPfactor × 2((QP−12)/3) (3)

where QP is the quantization parameter and QPfactor is an adjust-
ment factor, set to 1 in our experiments. Thus, to decide if Cn is
further divided in two clusters Cn+1 and Cn+2, we merely check
the condition RDn+1 + RDn+2 < RDn. Note that this method
is independent from the clustering algorithm. An example of binary
tree structure obtained after recursive partitioning is given in Fig. 2.
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Fig. 2. Example of a cluster partition based on a binary tree structure
and an RDO criterion. The clusters are recursively split to reach 4
clusters. The tree structure is described by only 5 bits.

To perform the exact same partitioning at the decoder, we then
need to transmit the binary tree structure. If we note the maximum
binary tree depth d, then the maximum number of bits needed to
describe the tree structure is:

RBT
max =

d−1∑
i=0

2i (4)

In our experiments we set d = 4, so the maximum number of clus-
ters isKmax = 16 andRBT

max = 15 bits. Thus, the bit-rate allocated
to the binary tree structure is negligible compared to the bit-rate of
the encoded sequence.

3.3. Linear mappings learning and encoding

We first describe here the process to learn the linear mappings at
the encoder, which are then used to perform de-noising at the de-
coder side (see Eq. 1). Considering multivariate linear regression,
the problem is of searching for each cluster c the function Pc mini-
mizing:

E = ||Mc
s
T −Mc

d
T PT

c ||2 (5)

which is of the form ||Y−XB||2 (corresponding to the linear regres-
sion model Y = XB + E). The minimization of Eq. (5) gives the
least squares estimator

Pc = Mc
sMc

d
T (Mc

dMc
d
T )−1 (6)

The linear mappings are thus obtained in a matrix form, which
then need to be transmitted to the decoder. For that purpose, we
consider the K linear mapping matrices as a sequence of K images,
and encode them using a video codec. An example of such matrices
is given in Fig. 3, where we can observe redundancies within and
between the different matrices.

The linear mappings matrices consist originally in floating points
values, thus they need to be quantized to integer values before en-
coding. To avoid a loss in terms of de-noising performance due to
the quantization, the matrices are quantized on 16 bits integer values.
The matrices are then encoded with the Range Extension (RExt) of
HEVC [27][28], which supports 16 bits input. The quantization pa-
rameter of HEVC was chosen very low (QP = −30) to limit the
loss on the de-noising performances. Finally, in order to recover
the floating point matrices, the minimum and maximum values of
the original floating points matrices need to be sent to the decoder
without loss.
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Fig. 3. Linear mapping matrices obtained on the first frame of the
Kimono sequence encoded with HEVC at QP=22. The clusters were
obtained with the K-means algorithm, with K = 10.

3.4. Oracle clustering for de-noising based on linear mappings
learning

Finally, we describe in this section a so-called oracle clustering,
which goal is to maximize the de-noising performances of the pro-
posed scheme for a fixed number of clusters K. In other words, we
want to minimize the distortion at the decoder side while keeping
a steady bit-rate associated to the linear mappings. Note that this
clustering is denoted “oracle”, as it relies on the knowledge of the
source patches, and can not be directly use in our scheme as it is not
reproducible at the decoder side. Nonetheless, it allows to evaluate
an upper bound on the coding performances.

Formally, the problem corresponding to the oracle clustering is
formulated as follows:

min
C

∑
i=1...K

∑
xd,xs∈Ci

||xs − Pixd||2 (7)

where xs and xd are corresponding source and decoded patches re-
spectively, and C = {Ci}i=1...K . The problem of Eq. (7) can be
solved using a greedy algorithm, described in Algorithm 1.

The initial set of linear mappings P(1)
1 . . .P(1)

K is supposed known,
e.g. obtained by first performing the K-means clustering on the
coded/decoded patches and learning a linear mapping for each clus-
ter.

Algorithm 1 Oracle clustering for linear mapping learning
Input: cluster number K, coded/decoded patches matrix Md = {xd},
corresponding source patches matrix Ms = {xs}
Output: cluster set C = {Ci, 1 ≤ i ≤ K}, corresponding mapping
matrices P = {Pi, 1 ≤ i ≤ K}
Repeat the two following steps until convergence:
Assignment step:
∀i = 1 . . .K,

C
(t)
i = {xd, xs : ||xs − P(t)

i xd||2 ≤ ||xs − P(t)
j xd||2∀j, 1 ≤ j ≤ K}

Update step:

∀i = 1 . . .K,P(t+1)
i = Mi

sMi
d
T
(Mi

dMi
d
T
)−1



4. SIMULATIONS AND RESULTS

The sequences used in the experiment are presented in Table 1, and
mainly consist in HEVC test sequences. The test sequences are pro-
cessed per Group Of Pictures (GOP), where a GOP contains a num-
ber of frames equal to the frame rate. The sequences are encoded
with the HEVC test model HM (ver 15.0) [29] using the Main pro-
file in Random Access, with 4 values for the Quantization Parameter,
QP = 22, 27, 32, 37. Note that the proposed method is applied on
the luminance channel.

We present below rate-distortion performances for several ex-
periments, computed using the Bjontegaard metric [30] with
respect to the sequences encoded with HEVC. More detailed
results are available at http://www.irisa.fr/temics/
demos/clusteringLinearMappingNoiseRemoval/
clusteringLinearMappingNoiseRemoval.html.

Table 1. Test sequences
Sequence Resolution Frames count Frame rate
City 1280 × 720 600 60
Park Scene 1920 × 1080 240 24
Tennis 1920 × 1080 240 24
Kimono 1920 × 1080 240 24
Cactus 1920 × 1080 500 50
Terrace 1920 × 1080 600 60
Basket 1920 × 1080 500 50
Ducks 1920 × 1080 500 50
People On Street 2560 × 1600 150 30
Traffic 2560 × 1600 150 30

We show in Table 2 the RD performances of our method (without
first pass de-noising) for each sequence, first performed with a fixed
number of clusters K = 10 (left column) and then compared to the
adaptive selection of K (center column). The results are averaged
over all GOPs. We can see that almost all sequences benefit from the
adaptiveK. We show the selected value ofK as well, averaged over
the four QP values, which varies between about 5 and 16 depending
on the sequence. The number of clusters is generally reaching higher
values for sequences with a higher resolution and/or frame rate. The
K value depends on the bit-rate as well, and we have in average over
the sequences K = 12.3, 11.1, 9.0, 8.0 for QP = 22, 27, 32, 37
respectively.

In the right column, we also give the performances of the ora-
cle clustering with K = 10 clusters, which show that the proposed
method could potentially reach about 30% of bit-rate reduction in
average. Note that these results merely represent an upper bound
on the performances, as the oracle clustering can not be performed
independently at the decoder side.

We then show in Table 3 the RD performances of our method, first
using the one step scheme as above (left column), then compared to
the two steps scheme (right column), where the videos are first de-
noised with the extension of BM3D to videos (VMB3D) [31]. The
noise standard deviation parameter is estimated as the square root
of the MSE computed on a GOP at the encoder side, and is then
sent to the decoder to perform the exact same de-noising. We use
the adaptive K selection for both schemes. Results are given for the
first GOP of the sequences.

We can see that substantial bit-rate reduction are achieved when
combining the proposed method with the VBM3D. All sequences
benefit from the two step schemes, and in particular the People On
Street sequence, which reaches almost 10% of bit-rate saving.

We also give the selected K values, and we can see that the num-
ber of clusters selected is higher when using the first pass de-noising.
In fact, in the RDO decision, the improvement brought by the first

Table 2. RD performances of the proposed scheme averaged over
all GOPs (Bjontegaard bit-rate gain with respect to HEVC)

K-means Oracle clustering
K = 10 Adaptive K K = 10
BD-rate BD-rate K value BD-rate

City -1.81 -2.24 8.9 -28.92
Park Scene 0.38 -0.47 5.8 -21.66
Tennis 0.08 -1.42 4.9 -38.20
Kimono 0.43 -0.94 5.8 -33.60
Cactus -1.08 -1.15 10.7 -23.48
Terrace -8.28 -8.08 14.4 -39.50
Basket -0.65 -0.80 8.8 -28.99
Ducks -1.88 -1.96 15.8 -22.07
People -2.56 -2.60 16.0 -23.26On Street
Traffic -1.26 -1.43 10.0 -25.50
Average -1.66 -2.11 10.1 -28.52

Table 3. RD performances of the proposed schemes for the first
GOP (Bjontegaard bit-rate gain with respect to HEVC)

Adaptive K Two steps scheme
BD-rate K value BD-rate K value

City -2.76 8.5 -3.24 12.3
Park Scene -0.69 5.8 -1.07 7.5
Tennis -0.90 6.0 -7.77 6.8
Kimono -1.32 5.8 -4.32 5.8
Cactus -1.12 12.0 -6.18 13.0
Terrace -5.25 15.8 -7.24 15.8
Basket -1.10 7.5 -3.80 9.0
Ducks -2.39 15.3 -4.13 16.0
People On Street -2.57 16.0 -9.63 15.5
Traffic -1.44 10.3 -5.43 11.5
Average -1.96 10.3 -5.28 11.3

pass de-noising reduces the distortion, and thus allows for a higher
bit-rate cost, i.e. more linear mappings can be sent to the decoder.

5. CONCLUSION AND PERSPECTIVES

In this paper we introduced a novel generic scheme designed to
de-noise compressed videos and improve the coding performances
of existing codecs. The compressed video patches are first clus-
tered, and linear mappings are then learned between the decoded
and source patches at the encoder side. These linear mappings are
then transmitted to the decoder to perform de-noising. We also pro-
pose an algorithm to optimally select the number of clusters in a
RD sense. Experimental results thus show that our method can im-
prove the coding performances of the HEVC standard. In addition,
the proposed technique is also complementary to existing de-noising
approaches, and by combining the different techniques, we can reach
even higher bit-rate reduction, up to about 10%.

Furthermore, we showed through the oracle clustering that much
higher coding gains could be reached, which calls for the investiga-
tion of more specific clustering techniques instead of the K-means
algorithm. Other perspectives could be explored as well thanks to
the genericity of the proposed scheme. For example, an extension to
color videos is quite straightforward, by vectorizing the three com-
ponents of the patches instead of the sole luminance. Moreover, ex-
tension to scalable applications can be considered, such as spatial
scalability, for which the proposed scheme could be used to per-
form joint de-noising and super-resolution. In fact a similar method
has been proposed for super-resolution applications in [32]. Finally,
LDR/HDR or color gamut scalabilities could be also investigated.

http://www.irisa.fr/temics/demos/clusteringLinearMappingNoiseRemoval/clusteringLinearMappingNoiseRemoval.html
http://www.irisa.fr/temics/demos/clusteringLinearMappingNoiseRemoval/clusteringLinearMappingNoiseRemoval.html
http://www.irisa.fr/temics/demos/clusteringLinearMappingNoiseRemoval/clusteringLinearMappingNoiseRemoval.html
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